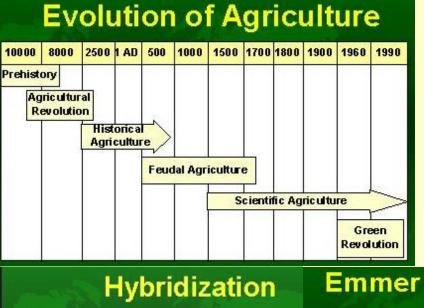


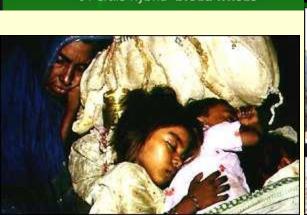
Reaching the unreached The innovation path of converging sciences into business

Suman PS Khanuja


Director

SKiES Life Technologies Pvt. Ltd.

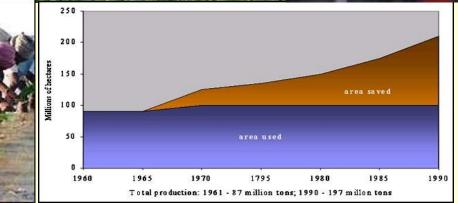
Bringing nature to life

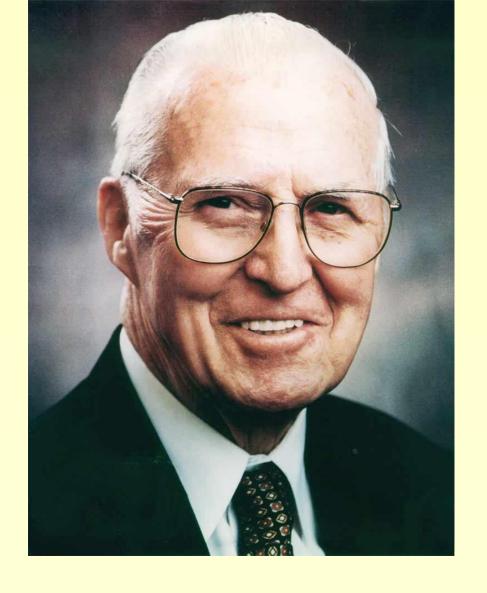

Not to follow Innovate

Tall grows to dwarf Innovate

Purely accidental

- Wild wheat X goatgrass
 - 14 + 14 chromosomes
- Produced fertile hybrid "emmer"
 - Diploid (28 Chromosomes)
 - Dispersed by wind
- ◆ Emmer X goatgrass
 - 28 + 14 chromosomes
 - Fertile hybrid "bread wheat"




Green Revolution

Think beyond Innovate

Example!

"Plants do not speak, they just whisper! Therefore, you have to be real close to them to understand them!!" — derived from Norman E Borlaug

Plants

Molecules of Drug Value....

Did you think

We did & We do !!

and we know...

Alkaloids

Terpenes

Plant's have an armory

Flavanoids

Glycosides

Saponins

India is going the way of developed countries. With the per capita income of Indians on the way up, lifestyle diseases are projected to replace infectious diseases as the major chunk of illnesses in the country.

The healthcare study was carried out by the Confederation of Indian Industry in association with McKinsey and Co.

The treatment of obesity has proven that it can reduce the onset of lifestyle diseases such as hypertension, high cholesterol levels, diabetes mellitus, and even erectile dysfunction.

Nervine
Obesity
Diabetes

General tonic

Drug Therapeutics billion \$ Categories

- Inflammatory/Immunological
- Cardiovascular
- Metabolic/endocrine
- Anti-infectives
- Oncology
- Neurological
- Pain

Plant sourcing...

Nervine tonics

Asparagus racemosus, Saponins

Acorus calamus, Phenyl propanoids

Withania somnifera, alkaloids

Bacopa monnieri, Triterpenoid saponins

Centella asiatica, Triterpenoid saponins

Nelumbo nucifera, Alkaloids

Plant sourcing...

Anti-Obesity

Obesity leads to

- •High blood pressure
- Diabetes
- Abnormal blood fats
- •Coronary artery disease
- •Stroke
- Osteoarthritis
- •Sleep apnea
- Cancer

Ephedra sinica, alkaloids ephedrine and pseudoephedrine

Garcinia cambogia, hydroxycitric acid (HCA)

Hypericum perforatum, Hypericin, polycyclic quinone

Red apple, Pyruvate.

Commiphora mukul, steroid, gugglesterone

Saccharum officinarum Policosanol

Camellia chinensis, Flavanoid, Caffeine

Allium sativum, Alicin (Diallyl thiosulfinate)

Annona cherimola, Nigella sativa, Oenothera biennis Salvia officinalis, Morus alba, Fagopyrum esculentum, Ocimum basilicum, Zea mays, Glycyrrhiza glabra, Ascorbic acid: Hippophae rhamnoides, Capsicum annuum, Anacardium occidentale, Momordica charantia, Moringa oleifera, Capsicum frutescens, Manihot esculenta, Raphanus sativus, Emblica officinalis

Citric acid: Hibiscus sabdariffa, Ananas comosus, Citrus limon, Citrus paradisi, Garcinia mangostana, Glycine max, Punica granatum, Citrus sinensis, Zizyphus jujuba, Fragaria spp

Beta Carotene: Morinda citrifolia, Luffa aegyptiaca Mimosa pudica, Spinacia oleracea, Daucus carota Capsicum annuum, Ipomoea batatas, Brassica nigra, Beta vulgaris

Amla - The Richest Natural Source of Vitamin C. 8.7 mg of Vitamin C from Amla = 100 mg of Vitamin C from synthetic sources

Plant sourcing...

Anti-Diabetes

Gymnema sylvestre, Gymnema saponin

(Protein) p-insulin

Coccinia indica, Triterpenoids, Taraxerone

Pterocarpus marsupium, flavonoid

Trigonella foenum-graecum alkaloids, Trigonelline and Choline

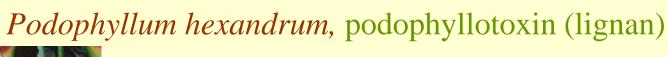
Tinospora cordifolia Tinosporin, cordifolide, diterpene

Plant sourcing...

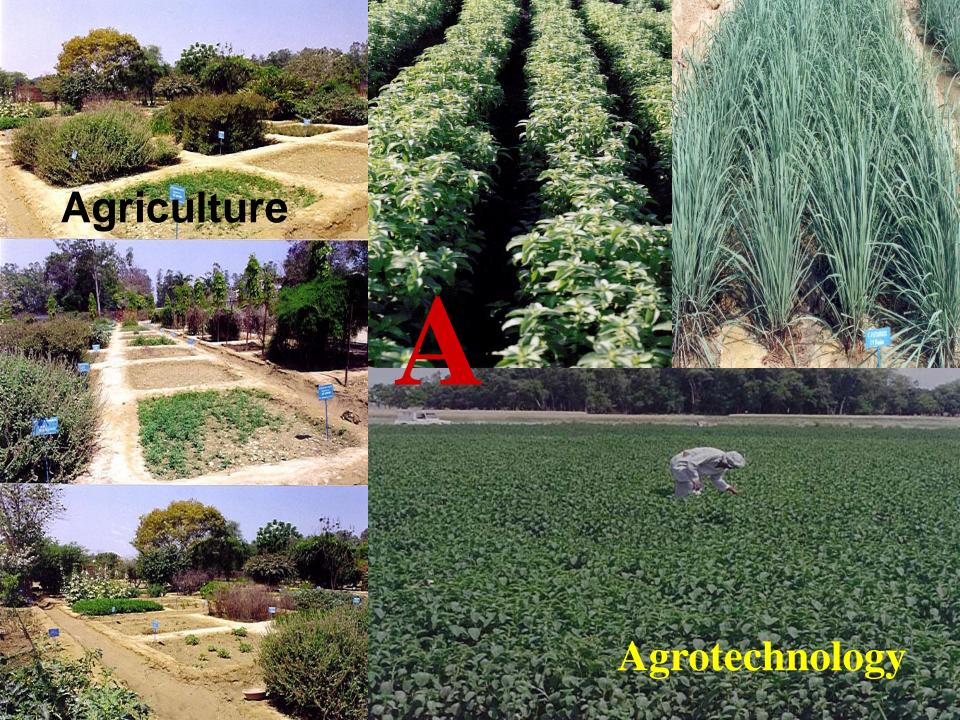
Anti-Cancer

Colchicum autumnale, colchicine(alkaloid)

Betula alba, Betulinic acid (Triterpene)


Camptotheca acuminata, camptothecin (alkaloid)

Cannabis sativa, tetrahydrocannabinol (Sesquiterpene)

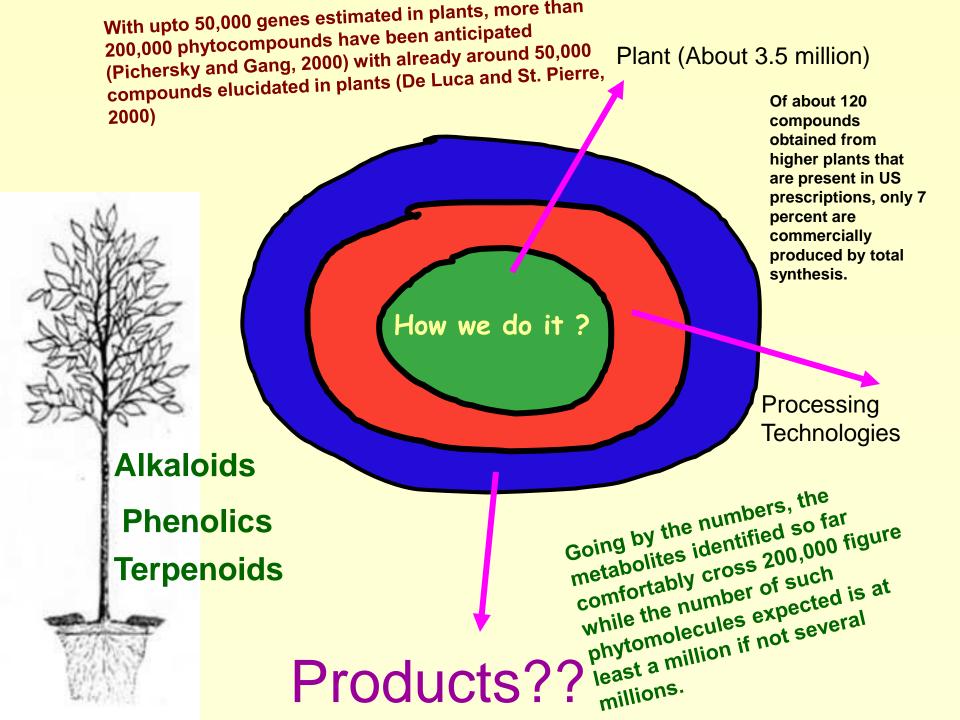

Nothapodytes foetida, camptothecin (alkaloid)

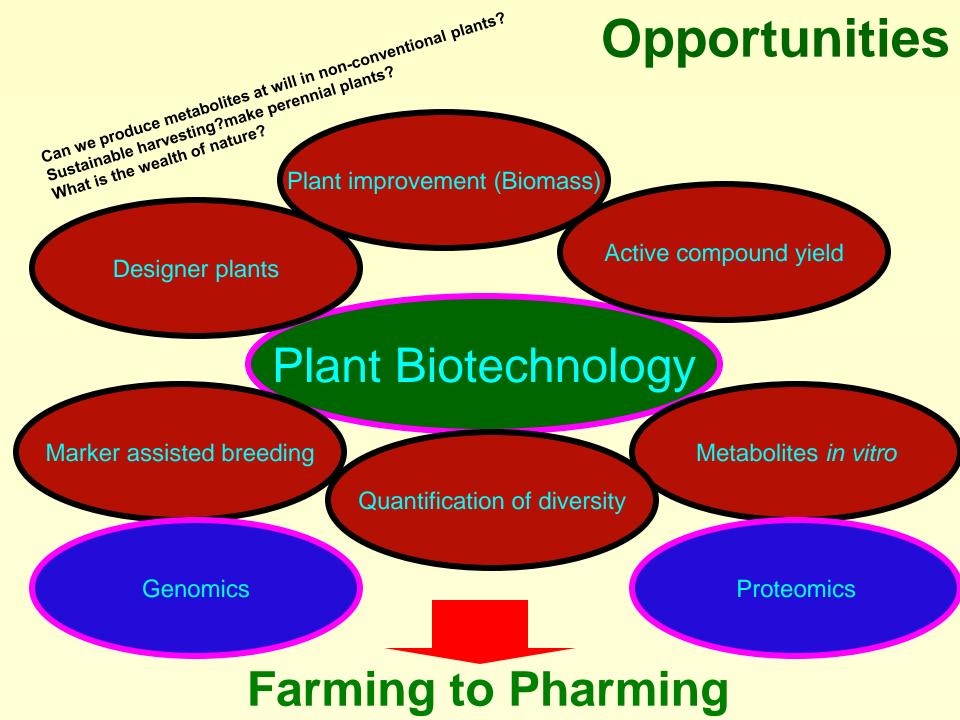
Catharanthus roseus, Vincristine, vinblastine (alkaloid)

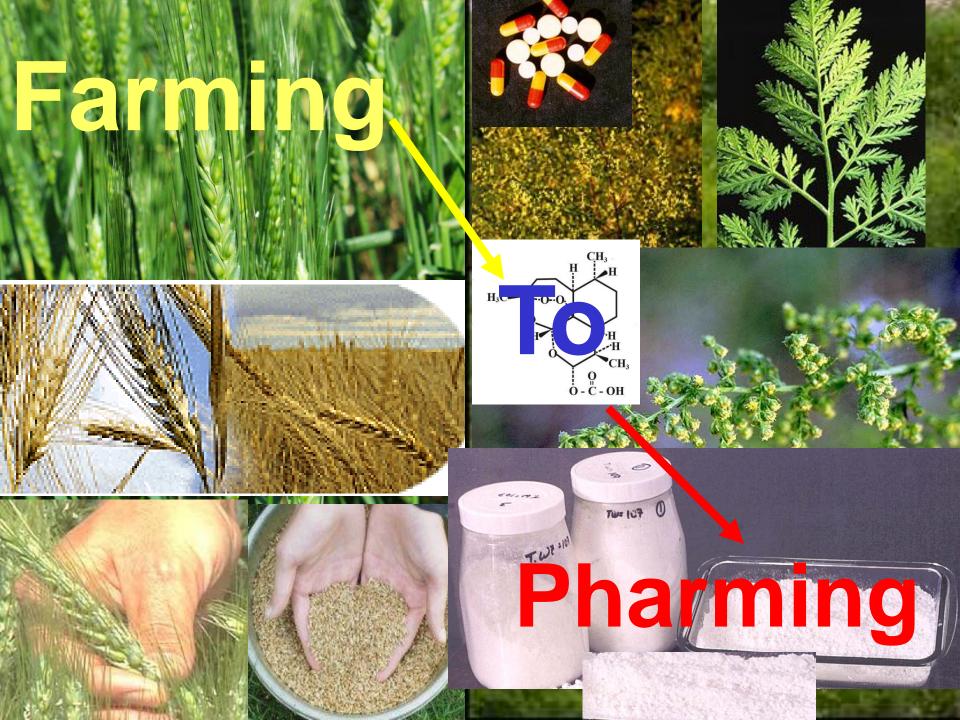
Taxus wallichiana, Taxol(diterpenoid)

And we need...

Microarray
MALDI-TOF-TOF
Real time PCR
Automated DNA Sequencer
DNA Synthesizer


DNA Fingerprinting
Transgenic Facility
Functional Genomics
Animal Cell culture
Bioprospection

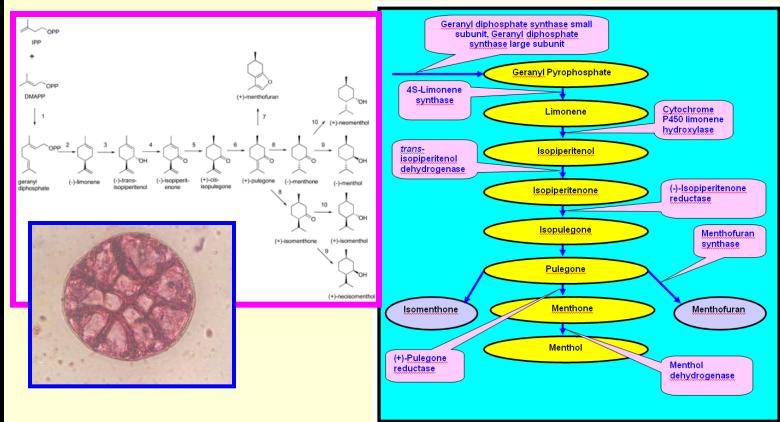


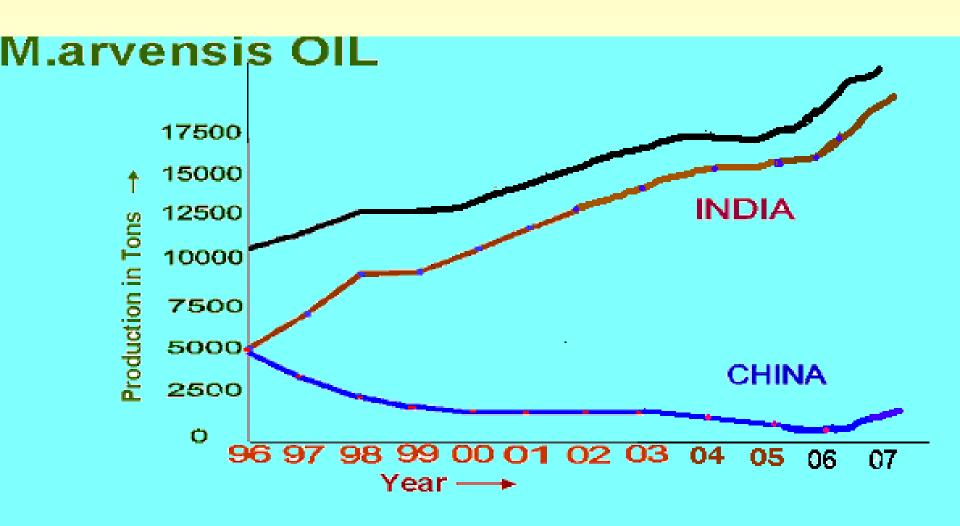


Distillation by farmers

The footprint of R&D

Marketing of essential oil


Futuristic vision for mint research


India exported 9546 tonnes of menthol 2005-2006 worth Rs 550.29 crores (Department of Commerce, Govt. of India).

India is the largest consumer of menthol with a figure of about 3100 metric tons in 2003

- ➤ The natural oil yields on an average 40-50% menthol and 50-60% dementholised oil, which can be used both in confectionery and medicine in place of imported peppermint oil.
- > Japanese mint oil is not distinguished from the peppermint oil in the Indian trade.
- The dementholised oil has been found to contain menthyl acetate (24.4%), free menthol (44.8%), menthone (24.6%) and hydrocarbons (6.2%). Among the hydrocarbons, alphapinene, a-1-limonene, carophyllene and cademene are present

10000 tonne of dementholated oil 25% Menthone = 2500 tonne menthol +4480 free menthol

Impact of futures trading on Mentha market

Particular		
Acreage		
Production		
Price		
Sales Value		
Export		
India's Share in world production		
India's Share in world trade		
Average Export realization		
Total export		

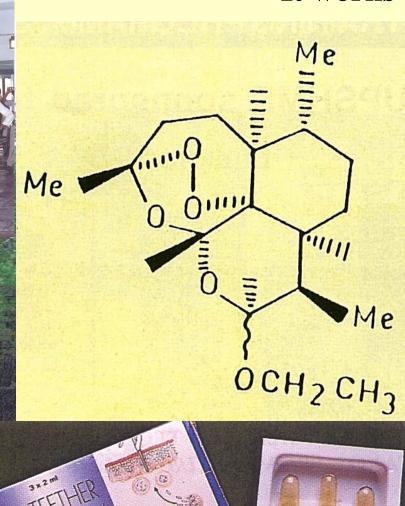
Export of Major Spices from India

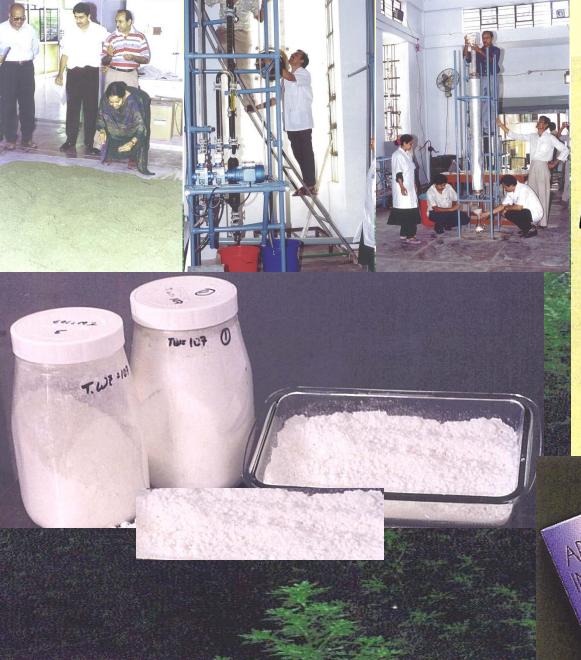
(QTY IN M.T; VALUE RS CRORE)

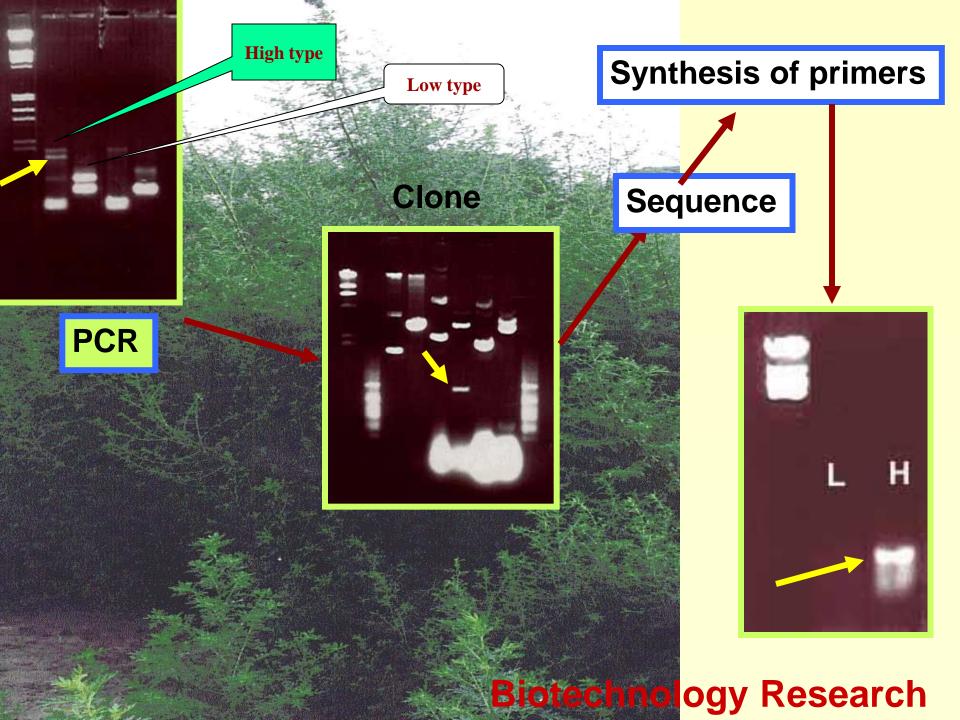
	2006 - 07(E)		
ITEM	QTY	VALUE	
PEPPER	28,750	306.02	
CARDAMOM(S)	650	22.36	
CARDAMOM(L)	1,500	16.95	
CHILLI	148,500	807.75	
GINGER	7,500	39.75	
TURMERIC	51,500	164.80	
SEED SPICES	70,125	362.52	
VANILLA	125	19.96	
CURRY POWDER	9,500	86.93	
MINT PRODUCTS	16,250	1100.95	
OILS & OLEORESINS	6,250	510.79	
TOTAL (Including Others)	373,750	3575.75	

India's Share In Value Added Spices

Qty in Tons


SPICES	INDIA'S EXPORT	WORLD TRADE	% SHARE
SPICE OILS & OLEORESINS	6250	7500	83
MINT PRODUCTS	16250	30000	54




Plant molecules for Health

- •Natural Products as drugs
- Industrial partnership
- Agro base
- •Societal impact

Signing of agreement with Sanat Products , New Delhi on 11.1.06 for technology licensing of Artemisia annua cultivation and processing

Campaign to fight malaria hit by surge in demand for medicine

David Cyranoski, Tokyo

An alarming shortfall of a key drug is undermining an international drive to reduce the malaria death toll. A rise in demand has led to a shortage of artemisinin, the main treatment for malaria that is resistant to conventional therapies, the World Health Organization (WHO) announced on 8 November.

Artemisinin is extracted from the wormwood plant, Artemisia annua, which grows wild in southern China and Vietnam. Combined with other drugs, its derivatives, such as artesunate and artemether, can clear symptoms of malaria in three days. Malaria currently kills about a million people every year, mainly in Africa.

In 2001, the WHO recommended that artemisinin-based combination therapies, or ACTs, should be used in countries where there is resistance to drugs such as chloroquine. Artemisininbased drugs are more expensive than conventional treatments, in part because large doses are required.

The WHO reached a high-profile agreement with drug firm Novartis in 2001 for the company to supply one such ACT — artemether-lumefantrine (Coartem) — at cost price. In May this year, the Geneva-based Global Fund to took the further step of requiring all of its which is used to make antimal with

Fight AIDS, Tuberculosis and Malaria Natural high: demand for products of the wormwood plant, make a precursor to artemisinin. (V. J. J.

prepare. "Before June 2004, we never got a guarantee of a large order from Novartis," she says. The company is now ramping up production. A factory that can produce 20 tonnes of artemether a year - the full amount requested by Novartis — is due to open next autumn.

But manufacturing capacity only matters if the raw material is available. Increasing demand has pushed up the price and forced producers to use lowquality, low-yield leaves. Kunming Pharmaceutical will open its own plantation in February.

With production looking bleak for months to come, Bosman says that one of the greatest concerns is the further spread of ineffective fake ACTs. "This will feed a huge black market," she says.

Work is also under way to find varieties that grow well in local climates in Africa. Tanzania already has a promising variety and should be able to provide 20 tonnes by 2006, says Bosman.

Chemical fix

Long-term, hopes are resting on the development of synthetic artemisininbased drugs, which avoid the unreliability of cultivation. Scientists at the University of California, Berkeley, have created transgenic bacteria that can

Estimated Demand 180 million doses of ACTs required

Total requirement= =27 tonne arteether == 54 tonne artemisinin From 2400 ha cultivation for one ACT

> For at least 10 ACTs Potential 24000ha

Nature, Vol 432, 18 November 2004, P259

Main producer China stopped exporting artemisinin and India is viewed as potential exporter

World market demand

Source of New Hope Against Malaria is in Short Supply

New drugs based on an old Chinese cure could save countless lives in Africa, if health agencies and companies can find ways to make enough

It seemed like a classic case of bait and switch. In 2004, the World Health Organization (WHO) and the Global Fund for AIDS, Tuberculosis, and Malaria threw their weight behind a radical change in the fight against malaria in Africa. Old, ineffective drugs were to be abandoned in favor of new formulations based on a compound called artemisinin that could finally reduce the staggering death toll. More than 20 African countries have signed on. But the catch is there aren't nearly enough of the new drugs to go around.

Just before Christmas, WHO—which buys the tablets from Novartis for use in African countries—announced that it would deliver only half of the 60 million doses anticipated in 2005, leaving many countries in the cold. "It's a very cruel irony," concedes Allan Schapira of WHO's Roll Back Malaria effort.

Other companies producing the drugs have the same problem as Novartis. Artemisinin is derived from plants grown primarily on Chinese and Vietnamese farms, and they have not kept up with demand. Several plans are afoot to create a new, more stable, and cheaper source. Last month, for instance, the Bill and Melinda Gates Foundation announced a \$40 million investment in a strategy to make bacteria chum out a precursor to artemisinin. But such alternatives will take at least 5 years to develop, so the shortages are likely to persist, warns Jean-Marie Kindermans of Médécins sans Frontières in Brussels.

New malaria drugs are badly needed. The parasite *Plasmodium falciparum* has developed resistance to the mainstays, such as chloroquine and sulfadoxine-pyrimethamine.

The death toll—more than a million annually—is not declining, despite Roll Back Malaria, an ambitious international campaign launched in 1998 to halve mortality by 2010.

Enter Artemisia annua (also known as sweet wormwood or Qinghao), a shrub used for centuries in traditional Chinese medicine. In the 1970's, Chinese researchers discovered that its active ingredient, artemisinin, kills malaria parasites; since then, several chemical derivatives with slightly better properties have been developed. Known by names such as artemether or artesunate, they cure more than 90% of patients within several days, with few side effects observed so far. Best of all, no resistance has been seen yet. To keep it that way, WHO and others recommend that

artemisinin compounds always be used with a second drug in a so-called Artemisinin-based Combination Therapy, or ACT.

Widely used in Asia, the introduction of ACTs in Africa has lagged. Countries have been reluctant to make the switch because, at

Fields of gold. Extracts of Artemisia annua (bottom) provide powerful new malaria drugs, but farms have not met demand for the shrub.

about \$2.40 per treatment course, ACTs are 10-20 times more expensive than existing drugs. The Global Fund has also dragged its feet, some allege, by funding the purchase of older, cheaper drugs for too long. Things began to change when an expert group published a scathing letter in *The Lancet* in January 2004, accusing the Global Fund and WHO of "medical malpractice." Both organizations denied the claims, explaining that they supported ACTs but that change took time. Both also concede that the ensuing debate spurred them to redouble their efforts.

But companies are reluctant to produce the drugs, as are farmers to grow *Artemisia*, without guarantees that they'll sell—and that's the problem. The Global Fund does not have

nearly enough money to fund the drugs' introduction across Africa. Donor countries like the U.S. and the U.K. appear reluctant to spend aid money on market guarantees for big pharma, says Schapira, because it could be seen as lining shareholders' pockets; at an emergency session at WHO just before Christmas, no donors made any commitments.

WHO's hope is that growing demand will eventually create a stable artemisinin supply at low prices. Artemisia farms are now springing up in India, and WHO is supporting experiments to grow the plants in east Africa.

The Gates Foundation is banking on a less fickle supply route. Over the past 10 years, chemical engineer Jay Keasling and colleagues at the University of California, Berkeley, have spliced nine genes into Escherichia coli bacteria to make them produce terpenoids, a class of molecules that includes artemisinin. With a few genes borrowed from Artemisia, they should be able to produce an artemisinin precursor, Keasling says.

On 13 December, the foundation announced a \$42.6 million grant to the Institute for OneWorld Health in San Francisco—which bills itself as the world's first nonprofit pharmaceutical company—to help Keasling finish the engineering. Then a biotech startup will optimize the process for producing artemisinin—"tons and tons of it," says One World Health president Victoria Hale—about 5 years from now. Her assumption is that pharmaceutical companies will package One World's artemisinin derivates into ACT tablets and sell them at well under a dollar per treatment.

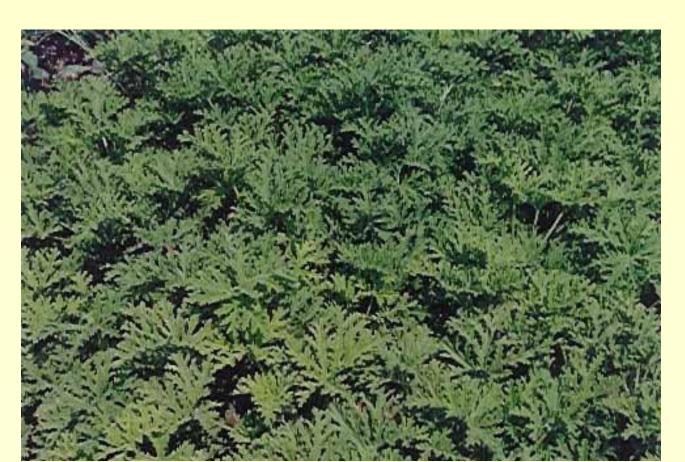
There's another alternative. Jonathan Vennerstrom and colleagues at the University of Nebraska, Omaha have synthesized a compound called OZ277 (or simply OZ) that, like artemisinin, has a peroxide bridge shielded by large chemical rings. The compound has been tested as an antimalarial in vitro and in animals, and it looks even better than the real thing, Vennerstrom and colleagues reported in Nature in August. Ranbaxy, an Indian pharmaceutical company, is developing it further; a phase I safety trial has just been completed.

Ideally, 4 or 5 years from now, ÖZ will result in new drug combinations that have the power of current ACTs but cost less than a dollar per treatment, says Chris Hentschel, chief executive of the Medicines for Malaria Venture (MMV), a non-profit based in Geneva that supports its development. Still, Hentschel is trying to temper his optimism. Drugs can always fail during testing, and even ACTs may eventually lose their efficacy, like almost every malaria drug before. That's why, despite the new hope, MMV has its pipeline well-stocked with unrelated candidates.

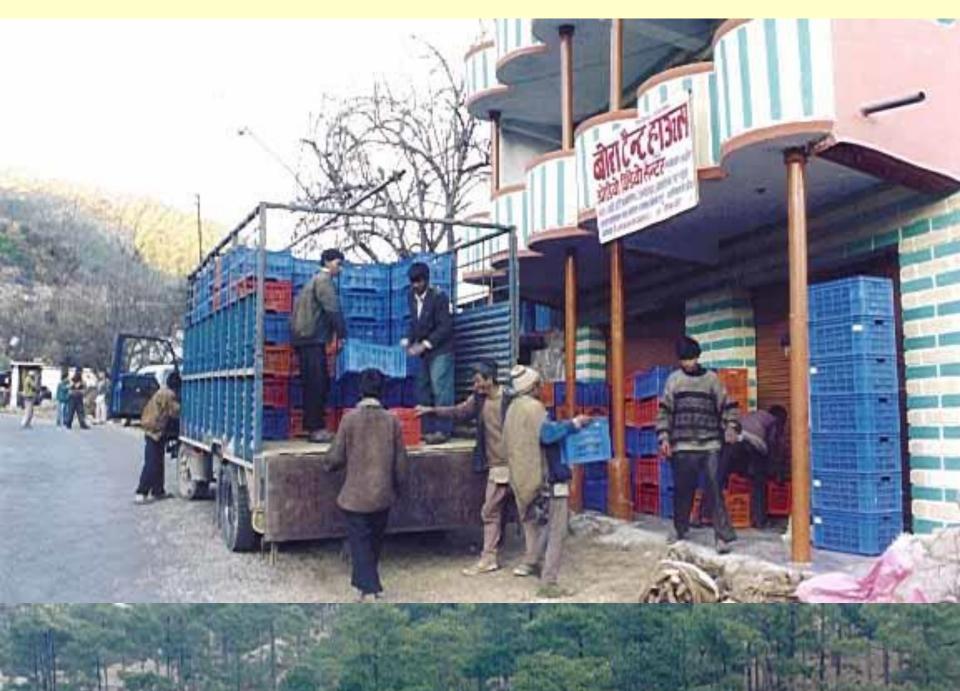
-MARTIN ENSERINK

Science, Vol 307 7 January 2005 p33

Taking New Challenges

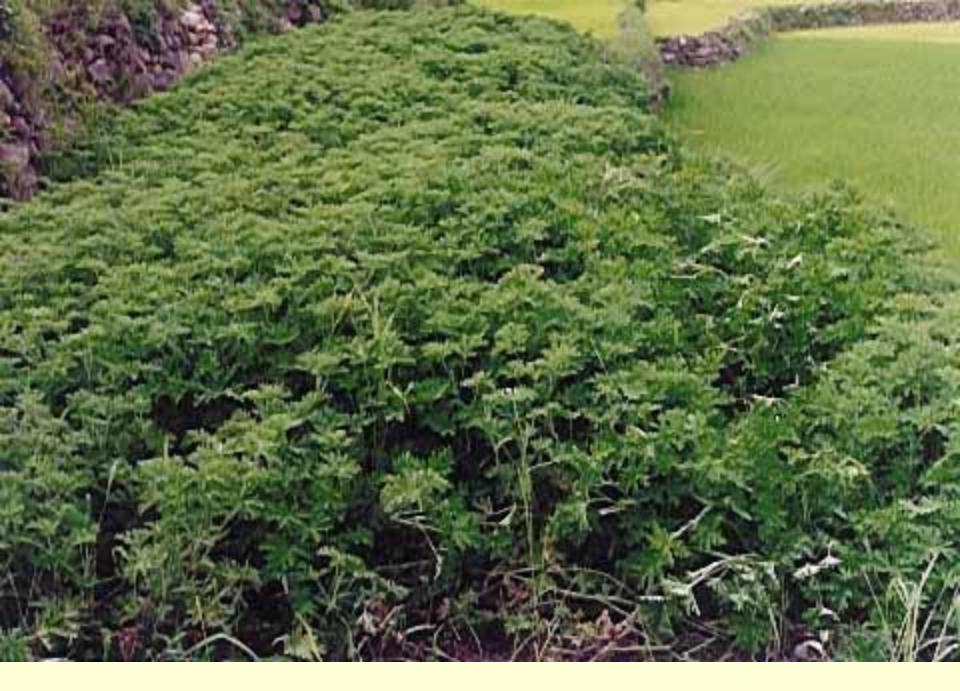

End-to-end Mission

Establishing Value Chain

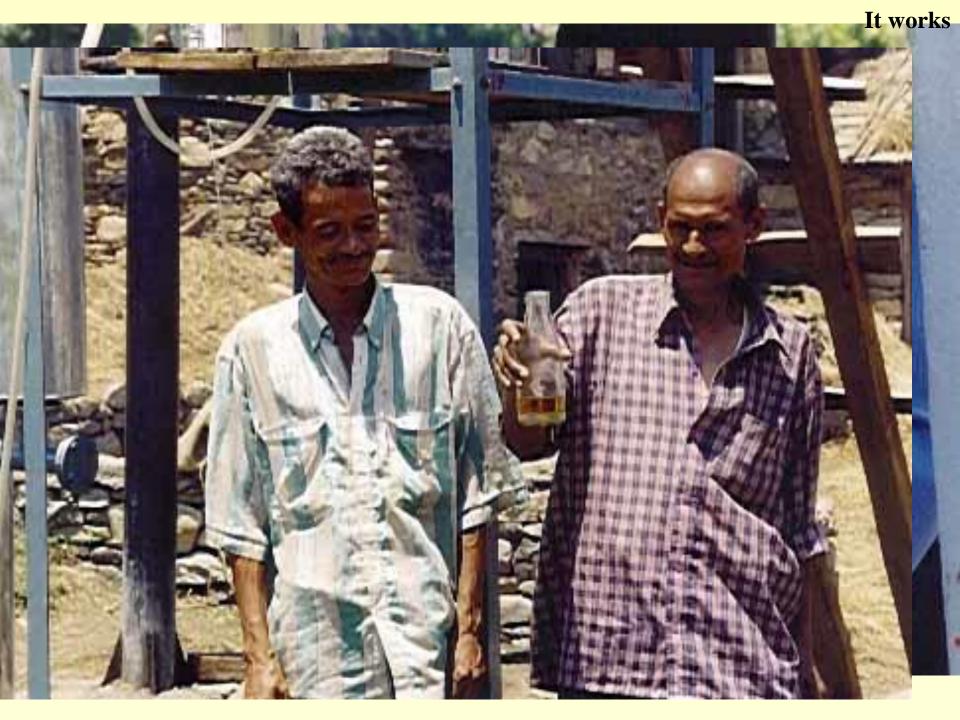

Cultivation to product to market

Entrepreneurship

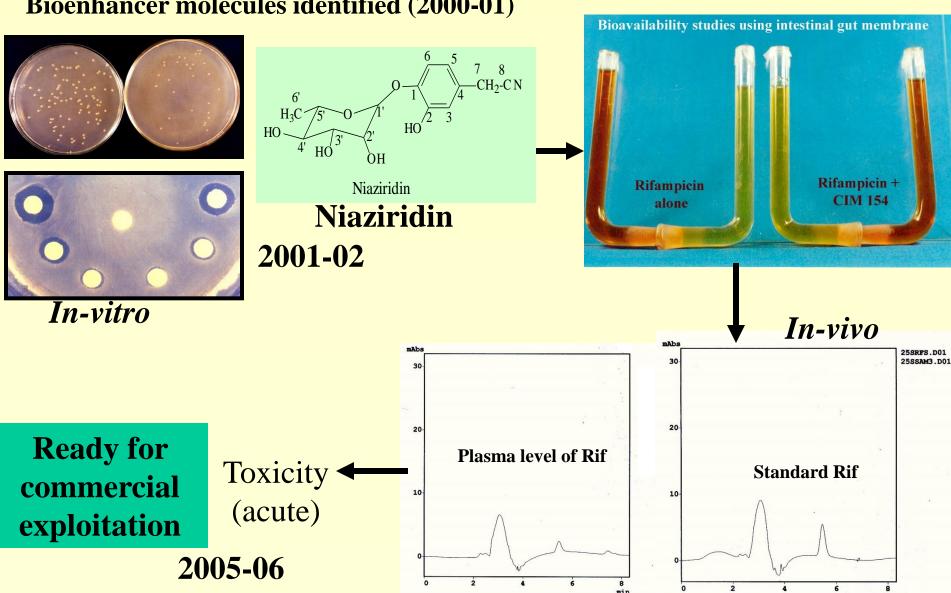
Mission mode approach for establishing value chain Biovillages



It works


It works

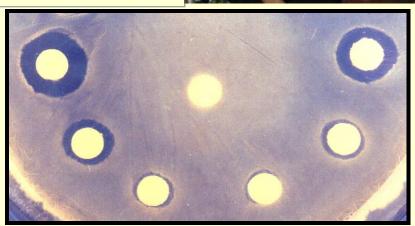
It works



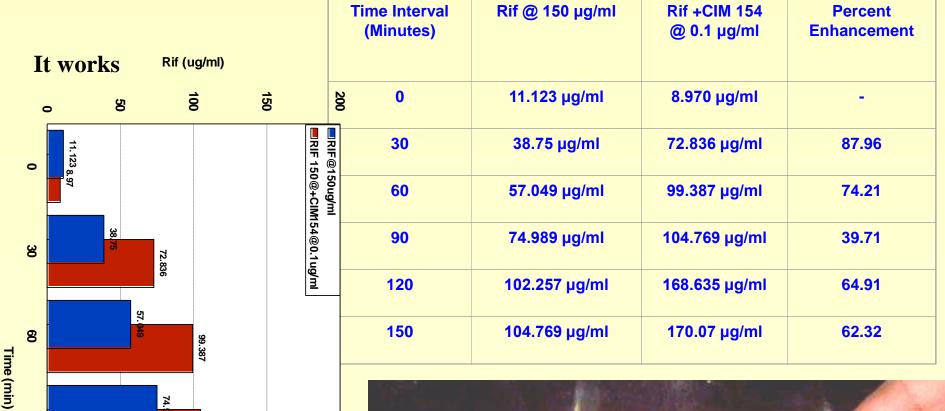
It works

Bioenhancers

Bioenhancer molecules identified (2000-01)



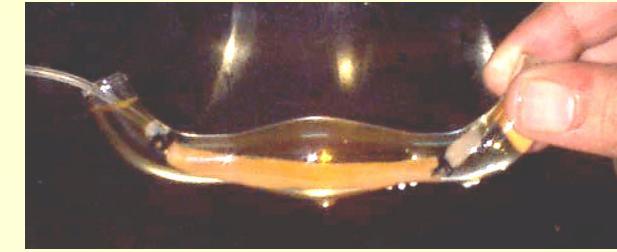
plasma level of rifampicin in rat model using HPLC method

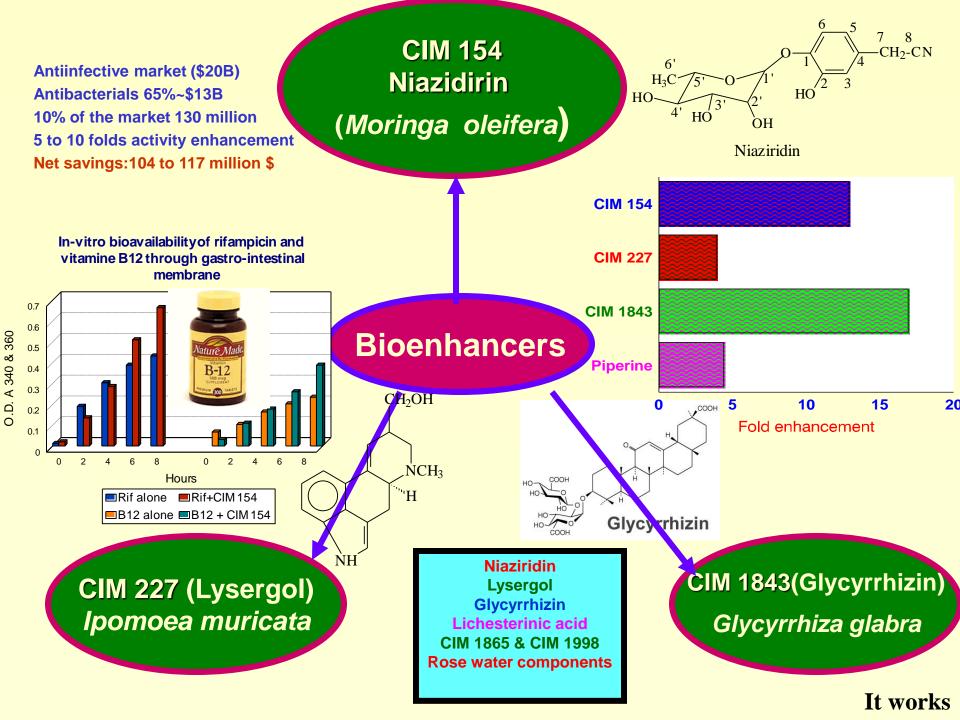

Bioenhancing activity of pure compound CIM154 @ 0.1 ug/ml in combination with rifampicin and nalidixic acid against *E.coli* (CA8000)

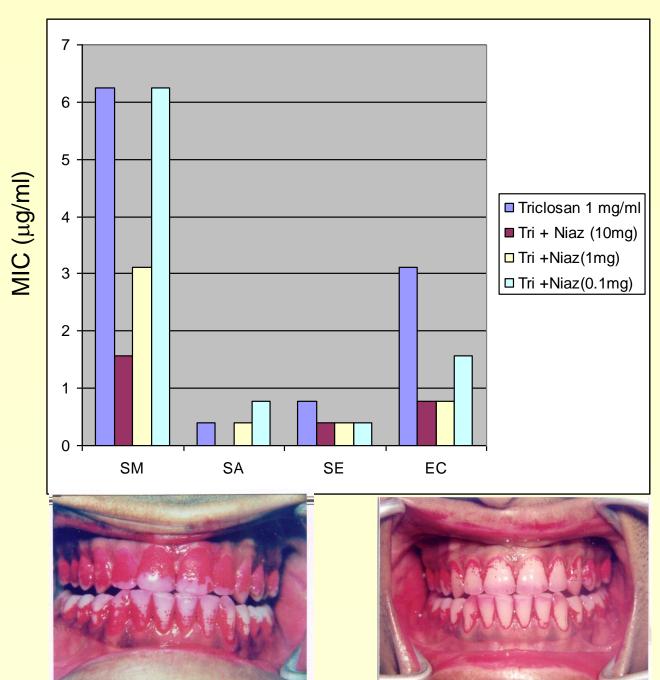
Thampiem and nandixie acid against E.con (CA0000)					
Antibiotics (μg/ml)	Titre	% Survival	Fold enhancement in killing over antibiotic alone.	It works	
Control (LB) Rif (20) Rif (20)+CIM 154 Rif (30) Rif (30)+CIM	1.1X10 ⁸ 1.5X10 ⁴ 3.9X10 ³ 3.8X10 ⁴ 3.0X10 ³	100 0.0136 0.0035 0.038 0.003	 38.8 12.6		
Control (LB) Nal (6) Nal (6) + CIM 154	6.0X10 ⁸ 6.0X10 ⁶ 1.2X10 ⁵	100 1.0 0.02	 50.0		

Enhancement in rat intestinal mucosal permeability to rifampicin in presence of CIM 154 using 'everted sac' assay

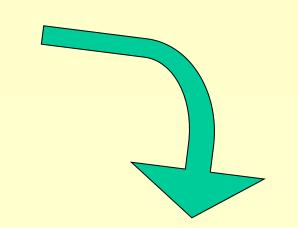
25


2


168.635

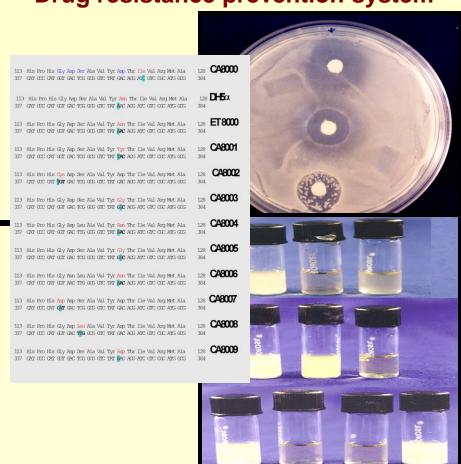

170.07

120


150

Genetic screen based bioprospecting for antibacterials (2000-01)

Drug resistance prevention system


IDMA Patent Appreciation Award for US Patent No.6,423,741

on

"Antimicrobial composition and the method for producing the same"

from Indian Drug
Manufacturers Association,
Mumbai

2005

FFOODS – functional foods

In today's lifestyle driven society preventive healthcare through nutrition is becoming essential and the most acceptable way over the medicine route which has its own side effects and complexities related to bioavailability and biocompatibility..

It is in this scenario that functional foods and nutraceuticals area emerging as the choice of health-conscious populations

"Functional Food"

Typically a functional food encompasses all edible items having a health-promoting and / or disease-preventing property beyond the primary function of providing nutrients.

"Nutraceutical"

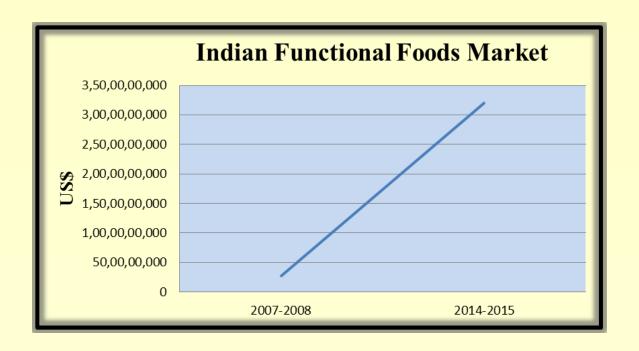
A nutraceutical is a product isolated / purified from foods and is normally available in medicinal forms that are not usually associated with food and possesses demonstrable physiological benefit / provides protection against chronic diseases.

Thus, functional foods are fast becoming a part of the meals with health benefits and better delivery.

New Frontier through Bio-horticulture

Interestingly vegetables and fruits or horticultural crops in general represent the best examples of edible plant harvest having functional food properties with a potential to develop nutritional ingredients or supplements. The perception of horticultural crops and products only as food, pulps and juices in various forms is now changing with developments in nutrition research. The chemistry of horticultural crops including edible and non-edible plant biomass is gaining importance for their metabolome capabilities to compete with conventional medicinal plants constituents for preventive health care

Khanuja SPS, Shukla AK (2011) Human health and nutrition: Functional foods. <u>In</u>: *Horticulture to Horti-Business* (Editors: KL Chadha, AK Singh, VB Patel), Proceedings Book of the Fourth Indian Horticulture Congress held at New Delhi during 18-21 November, 2010, Westville Publishing House, New Delhi, pp 433-445

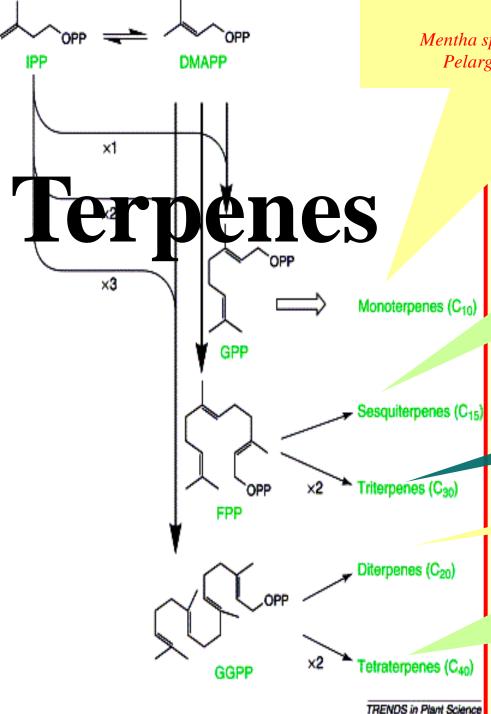

Functional foods as the dietary components that provide health benefits beyond basic nutrition

- Carotenoids (like β-carotene, lutein, zeaxanthin, lycopene)
- Fiber (insoluble fiber, β-glucan, soluble fibres, whole grains)
- Fatty acids (mono-unsaturated fatty acids, poly-unsaturated fatty acids like omega-3-fatty acids, ALA, DHA, and conjugated linoleic acid)
- Flavonoids (anthocyanidins, proanthocyanidins, flavanones, flavonols, flavanols catechins, epicathecins, procyanidins)
- Phenols (caffeic acid, ferulic acid)
- Plant stanols/sterols & polyols (sugar alcohols xylitol, sorbitol, mannitol, lactitol),
- Prebiotic/probiotics (inulin, fructo-oligosaccharides, polydextrose, lactobacilli, bifidobacteria)
- Phytoestrogens (isoflavones, lignans)

Designer functional foods Vegetable matrices impregnated with bioactives

- Functional foods affect beneficially one or more target functions in the body, beyond adequate nutritional effects, to either improve stage of health and well-being and/or reduce the risk of disease.
- Development of functional fruit and vegetable matrices enriched with bioactives, probiotics and minerals (calcium and zinc).
- Vacuum and/or atmospheric impregnation techniques seem to be feasible technologies for exploitations of fruit and vegetable tissues as new matrices into which functional ingredients can be successfully incorporated, providing novel functional product categories and new commercial opportunities.

Alzamora et al, 2005. Journal of Food Engineering 67: 205-214


Source: Technopak

In India, the functional food industry has earned revenues of more than US \$ 265 million (Approx Rs 1,325 Crores) in 2007-08 and with an estimated growth rate of 43 %, it will reach US \$ 3.2 billion (Approx Rs 16,000 Crores) in 2014-15. (Source: Technopak)

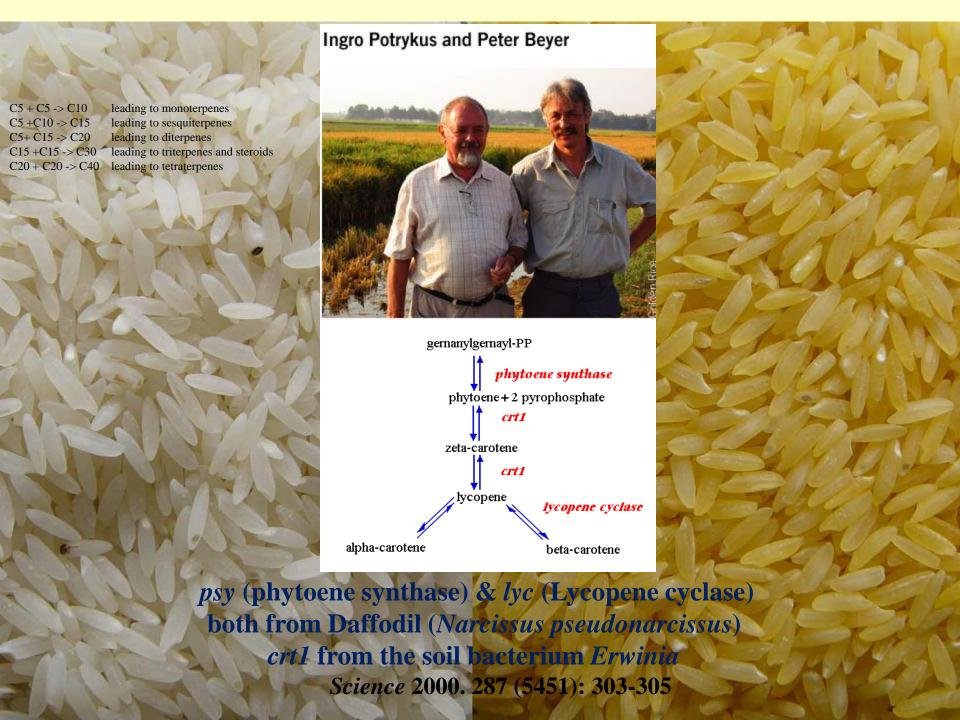
In India, functional foods are therefore expected to see increased consumption over the next five years resulting in functional foods and beverages garnering greater product share in the market as opposed to dietary supplements (Source: Frost & Sullivan)

Chemistry of Agri-produce determines the value...

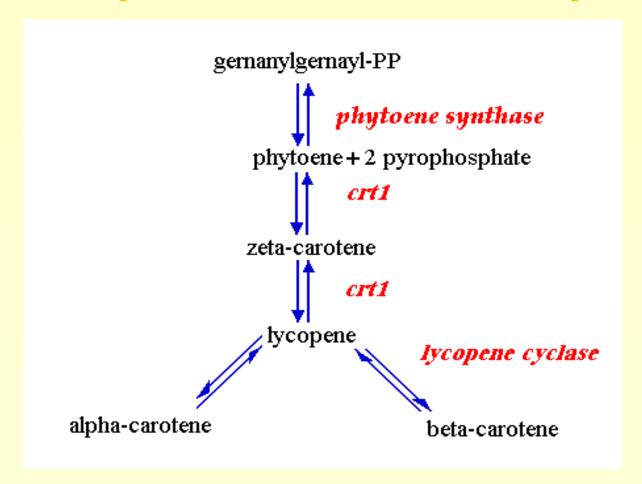
Secondary Agriculture

22000 described

Mentha species, Cymbopogon Species, Ocimum Species, Pelargonium species, Clarkia breweri, Petunia etc


Sesquiterpene lactones (SL's) of which over 3000 have been described, mostly in the Asteraceae (daisy) family

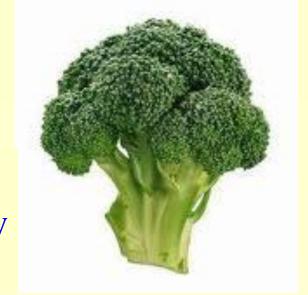
Artemisia annua, Pyrethrum, Chicory, Tulip, Tagetus, Sage, cotton, Tansy, Yarrow, Chamomile, Arnica etc


Bacopa monnieri, Centella asiatica, Coccinia indica, Lagerstroemia speciosa, Annona cherimola, Nigella sativa, Oenothera biennis, Salvia officinalis, Morus alba, Fagopyrum esculentum, Ocimum basilicum, Zea mays, Glycyrrhiza glabra, Commiphora

Stevia rebaudiana, Tinospora cordifolia, Panex notogingsang etc

Morinda citrifolia, Luffa aegyptiaca Mimosa pudica, Spinacia oleracea, Daucus carota, Capsicum annuum, Ipomoea batatas, Brassica nigra, Beta vulgaris

Golden Example of Terpenoid Pathway use in Food Crop: Rice for Vitamin Fortification plus...



Think beyond: Horti Rice!!
Tomato.... Moringa.... Carrot....

Sulforaphane

Plant Source: Broccoli

Nutritional Potential / Use: Stimulant for enzymes that detoxify chemical carcinogens

R & D Challenge / Scope:

The trait has been selectively bred out of commercial broccoli because of its bitter taste

Dietary Fiber

Plant Source:

Avocado, Oat, Flax, Chia, Whole grains, Cranberry

Essential dietary ingredient but average consumption is only 14-15g daily against the RDI of 38 grams



R & D Challenge / Scope:

Fiber content needs to be enhanced in food items for optimum fiber diet that can be RDI equivalent

Omega-3 fatty acids

Plant Source: Chia, Flax, Soy

Nutritional Potential / Use:

Docosahexaenoic acid (DHA) and Eicosapentaenoic acid (EPA) are made by seawater microalgae, which in turn is consumed by fish that accumulate these fatty acids. Therefore source is mainly fish or rarely microalgae but not plants.

R & D Challenge / Scope:

Plant sources normally contain only alpha linolenic acid (ALA) and lack the more healthful DHA and EPA. Strategic breeding and biotech interventions are required so that DHA and EPA, can be produced directly from microalgae or designer plants

Peptides

Plant Source:

Wheat germ, Spinach

Nutritional Potential / Use:

Certain food-derived peptides lower blood pressure by inhibiting angiotensin-converting enzyme (ACE)

R & D Challenge / Scope:

Most horticulture sources are not even explored for such peptides

Calcium fortified food

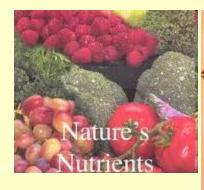
Plant Source:

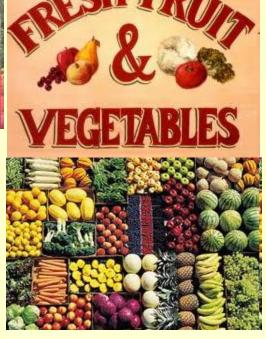
Soybean, Peanuts, Pea etc

Soy milk fortified with calcium is the option for people suffering from milk allergy due to lactose intolerance

R & D Challenge / Scope:

Taste acceptability demands improvement. Similarly bioavailability of calcium (vis-à-vis cow milk) and need of alternate sources can be visualized


Vitamins and Minerals


Plant Source:

Most fruits and vegetables

Nutritional Potential / Use:

Nutritional deficiencies arising out of geographical and regional variation in horticulture crop production patterns can be managed through functional foods

R & D Challenge / Scope:

Identification of synergistic interactions that enhance accessibility, bioavailability and biological potency is desirable

β-carotene

Plant Source:

Carrot, Moringa, GM rice

Nutritional Potential / Use:

Golden Rice developed by transforming rice with three genes: phytoene synthase (psy) and lycopene cyclase (lyc) from daffodil (*Narcissus pseudonarcissus*) and crt1 from the soil bacterium *Erwinia uredovora*. In Golden Rice 2, psy gene from maize was used with crt1 from the original golden rice to get a higher carotenoid content

R & D Challenge / Scope:

Technology could not be commercialized effectively beyond proof-of-concept stage due to large dietary requirements of the fortified rice.

Sources like Moringa offer non-GM sources that are edible and cultivable both and have no safety risks or toxicity

Alpha-carotene from veggies linked to longer life
By Katherine Harmon | Thursday, December 30, 2010 | 6

The team found an especially strong correlation between higher alpha-carotene levels and lower risk of death from <u>diabetes</u>, upper respiratory tract and upper digestive tract cancers, as well as lower respiratory disease.

Unlike beta-carotene, alpha-carotene is not often found in multivitamins or other common dietary supplements, which suggests that most of the quantities found in people's blood comes from food (primarily yellow-orange and dark green veggies, including broccoli, carrots, collards, green beans, lettuce, peas, pumpkin, spinach, sweet potatoes and winter squash). And a previous case-control study found that eating more of these sorts of alpha-carotene-rich veggies led to a decreased risk of lung cancer.

Annona squamosa (Annonaceae)

Major volatile constituents of A. squamosa L. bark

1H-cycloprop(e)azulene (3.46%) germacrene D (11.44%) bisabolene (4.48%) caryophyllene oxide (29.38%) bisabolene epoxide (3.64%) kaur-16-ene (19.13%)

Annonaceous acetogenins have also been isolated from *A. squamosa* seeds. Squamotacin showed cytotoxic selectively for the human prostate tumor cell line (PC-3).

Medicinal Uses

- ❖The leaves serve as a purgative.
- ❖Bark decoction is used to stop diarrhea.
- ❖ Decoction of the leaves and/or root is taken in cases of dysentery.
- ❖ Decoction of the leaves is good to cure diabetes.
- ❖The leaves are applied to abscesses and open wounds and used to cure skin itches.
- ❖The crushed leaves are sniffed to overcome fainting spells and hysteria,
- ❖ The mashed, ripe fruit, mixed with salt, is applied on tumors.
- ❖ Decoction of the leaves is used to aid digestive problem, and to treat colds.
- ❖ Decoction of the leaves is employed in baths to alleviate rheumatic pain
- ❖ Decoction of the leaves is used to clarify urine.
- ❖ The seeds immersed in coconut oil is a traditional treatment for head and body lice. The seed is also made into powder and can be applied on head to kill lice in hair.

It is high in calories and is a good source of iron. The fruits contain no sodium, they are high in carbohydrates and rich in calcium, vitamin C and phosphorus, and with a sugar content of about 50-50 (glucose and sucrose). The roots of the sugar apple tree are powerful enough to induce abortions.

Prebiotics

Plant Source:

Jerusalem artichoke, jicama chicory root, soybean, onion, garlic, raw oats, unrefined wheat, unrefined barley and yacon

Non-digestible food components (oligofructose and inulin) stimulating the growth and / or activity of bacteria in the digestive system, which in turn benefit body health

R & D Challenge / Scope:

Some people suffer from fructose malabsorption, excess dietary intake of inulin (a fructan) may lead to minor side effects, like increased flatulence and loose stools. Better formulation required to overcome this

Punica grantum

- Pomegranate aril (seed casing) juice provides about 16% of an adult's daily vitamin C requirement per 100 ml serving, and is a good source of vitamin B5 (pantothenic acid), potassium and antioxidant polyphenols.
- The seeds also supply fibre and unsaturated oils.
- The most abundant polyphenols in pomegranate juice are the hydrolyzable tannins called ellagitannins formed when ellagic acid binds with a carbohydrate.
- Punicalagins are unique pomegranate tannins with free-radical scavenging properties.
- During intestinal metabolism by bacteria, ellagitannins and punicalagins are converted to urolithins which have unknown biological activity *in vivo*.
- Other phytochemicals include polyphenolic catechins, gallocatechins, and anthocyanins, such as prodelphinidins, delphinidin, cyanidin, and pelargonidin.

239 Nucleotides

No EST

31 Proteins

In human pilot studies, of juice the pomegranate was effective in reducing heart disease risk factors, including LDL oxidation, macrophage oxidative status, and foam cell formation. all of which are steps in atherosclerosis and cardiovascular disease.

Botanical Berries

- The botanical definition of a berry is a fleshy fruit produced from a single ovary.
- A plant that bears berries is said to be bacciferous.
- The berry is the most common type of fleshy fruit in which the entire ovary wall ripens into an edible pericarp.

Oxygen Radical Absorbance Capacity (ORAC)

- •A method of measuring antioxidant capacities in biological samples *in vitro*.
- Spices, berries and legumes are rated highly.
- •In nearly all vegetables, conventional boiling can reduce the ORAC value by up to 90%, while steaming retains more of the antioxidants.

The good nutrient content and high ORAC distinguishes several berries within a new category of functional foods called "superfruits".

Bearberry (Arctostaphylos spp.) Barberry (Berberis; Berberidace Crowberry (*Empetrum* spp.) Currant (*Ribes* spp. Elderberry (Sambucus niger) Gooseberry (Ribes spp.) Grape, (Vitis vinifera) Honeysuckle (*Lonicera* spp) Lingonberry (Vaccinium vitis-ida Mayapple (Podophyllum spp) Nannyberry (Viburnum spp.) Oregon-grape (Mahonia aquifolia Strawberry Tree (Arbutus unedo) Tomato (Solanum lycopersicum) Watermelon (Citrullus lanatus)

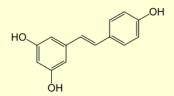
Cranberry (*Vaccinium* spp.)

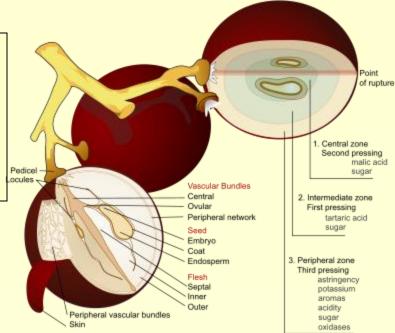
Vitis vinifera

A grape is a non-climacteric fruit. It can be eaten raw or used for making jam, juice, jelly, vinegar, wine, grape seed extracts, raisins, and grape seed oil. It is also used in some kinds of confectionery.

• Approximately 71% of world grape production is used for wine, 27% as fresh fruit, and 2% as dried fruit. India was ranked 10th among the highest grape producing countries of the world in 2009.

Wine Grapes




113676 Nucleotides
362193 ESTs
76179 Proteins

French Paradox

Although the French tend to eat higher levels of animal fat, the incidence of heart disease remains low among them due to protective benefits of regularly consuming red wine. Apart from potential benefits of alcohol itself, including reduced platelet aggregation and vasodilation, polyphenols (like resveratrol) in the grape skin provide other health benefits.

Trans-Resveratrol

(3,4',5-trihydroxystilbene) - a stilbenoid

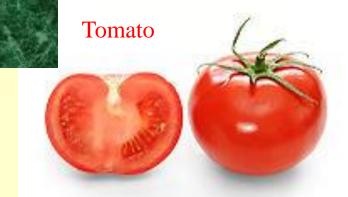
Other Grape Constituents

- Anthocyanins tend to be the main polyphenolics in purple grapes whereas flavan-3-ols (e.g., catechins) are the more abundant phenolic in white varieties.
- The flavonols syringetin, syringetin 3-O-galactoside, laricitrin and laricitrin 3-O-galactoside are also found in purple grape but absent in white grape.
- Seeds contain oligomeric proanthocyanidins. Together with tannins, polyphenols and polyunsaturated fatty acids, these seed constituents display inhibitory activities against several experimental disease models, including cancer, heart failure and other disorders of oxidative stress.
- Grape seed oil from crushed seeds is used in cosmeceuticals and skincare products for many perceived health benefits. Grape seed oil is notable for its high contents of tocopherols (vitamin E), phytosterols, and polyunsaturated fatty acids such as linoleic acid, oleic acid and alpha-linolenic acid.

349 Nucleotides 8584 ESTs 251 Proteins

- A watermelon contains about 6% sugar and 92% water by weight.
- As with many other fruits, it is a source of vitamin C.
- Contains large amount of amino acid citrulline, lycopene and beta-carotene.
- Seed is demulcent, diuretic, pectoral and tonic. It is also used to treat treat bed wetting and is also a good vermifuge.
- A fatty oil in the seed, as well as aqueous or alcoholic extracts, paralyze tapeworms and roundworms.
- The fruit is used as a febrifuge. It is also diuretic, being effective in the treatment of dropsy and renal stones. It contains lycopene.

4591 Nucleotides 31314 ESTs 2793 Proteins



- Bananas come in a variety of sizes and colors when ripe, including yellow, purple, and red.
- Staple starch of many tropical populations.
- Reduce the risk of colorectal cancer, breast cancer and renal cell carcinoma.
- Individuals with a latex allergy may experience a reaction to bananas.
- Contain considerable amounts of vitamin B6, vitamin C, and potassium. The latter makes them of particular interest to athletes who use them to quickly replenish their electrolytes.
- In India, juice is extracted from the corm and used as a home remedy for jaundice, sometimes with the addition of honey, and for kidney stones.
- India is the top banana producing country of the world.

Solanum lycopersicum

127700 Nucleotides 298229 ESTs 5821 Proteins

1 Genome Sequence

- They contain lycopene, one of the most powerful natural antioxidants. It is found to prevent prostate cancer and enhance the skin's ability to protect against harmful UV rays .
- Tomato varieties are available with double the normal vitamin C (Doublerich), 40 times normal vitamin A (97L97), high levels of anthocyanin (P20 Blue), and two to four times the normal amount of lycopene (numerous available cultivars with the high crimson gene).
- Its consumption has been associated with decreased risk of breast cancer, head and neck cancers and might be strongly protective against neurodegenerative diseases.
- Green unripe fruit of the tomato plant contain small amounts of the poisonous alkaloid tomatine.
- Tomatoes have been linked to seven salmonella outbreaks since 1990.

Capsicum annuum

Capsicum

1628 Nucleotides 118060ESTs 1283 Proteins

- Despite being a single species, *Capsicum annuum* has many cultivars, with a variety of names.
- Capsaicin and several related compounds are called capsaicinoids and are produced as a secondary metabolite by chili peppers, probably as deterrents against certain herbivores and fungi
- Capsaicin, creates a burning sensation once ingested.
- It is a potential inhibitor of cholera toxin production in *Vibrio cholerae* (Chatterjee et al 2010).
- It is currently used in topical ointments, as well as a high-dose dermal patch (trade name Qutenza), to relieve the pain of peripheral neuropathy such as post-herpetic neuralgia caused by shingles.
- Capsaicin creams are used to treat psoriasis as an effective way to reduce itching and inflammation

- Capsaicin may help treat ear infections such as otitis.
- Also the active ingredient in riot control and personal defense pepper spray chemical agents.
- Acts as a pest deterrant.

Supplement Produces a 'Striking' Endurance Boost

ScienceDaily (Aug. 26, 2010) — Research from the University of Exeter has revealed taking a dietary supplement to boost nitric oxide in the body can significantly boost stamina during high-intensity exercise.

Beets. Taking a dietary supplement to boost nitric oxide in the body can significantly boost stamina during high-intensity exercise. Earlier research showed that the high nitrate content of beetroot juice, which also boosts nitric oxide in the body, has a similar effect on performance. (Credit: iStockphoto/Joe Biafore)

Allium sativum, Alicin (Diallyl thiosulfinate)

Aged garlic shows blood pressure improvement benefits: Study By Stephen Daniells, 17-Nov-2010

Daily supplements of an aged garlic extract may reduce systolic blood pressure by 10.2 mmHg, suggests new data from Australia.

Writing in *Maturitas*, scientists from the University of Adelaide report that the benefits were only observed in people with initial systolic pressure (SBP) of 140 mmHg or over, and that no effects were observed in people with lower SBP.

"Aged garlic extract is regarded as safe and more tolerable than garlic powder, and superior to raw or cooked garlic in relation to its antihypertensive properties," explained the researchers. "In addition, the active component S-allylcysteine (SAC) in AGE is less volatile than allicin in garlic powder, and therefore more easily standardised."

SUMAN KHANUJA INNOVATION ENTERPRISES

Research Centre at Biotech Park Lucknow

National Technology Day: 11th May 2012

SKiES Life Technologies (P) Ltd

Bringing nature to life

www.skiesindia.com

Vision: Constructing the science driven industrial path of translating traditional agriculture and natural biodiversity knowledge into high value products employing technological innovations for integrating life sciences, chemistry and engineering for sustainable bioharvests on ecocompatible business mode.

Mission: To evolve as the technology gateway and industrial innovation hub delivering sustainable technologies, products, services and business alliances in the sectors of agribiotech, nutraceuticals, health foods & supplements, bioactive ingredients, botanicals and natural products from flora and fauna.

Aim: Science and innovation driven translational research to enhance the industrial value of flora-fauna produce and products making business of botanicals and agriculture happen sustainably on a commercial scale. Simultaneously also providing "entrepreneur shaper" platform to mentor out-of-box creative ideas in agriculture and biotechnology including natural products to take off as micro or small industrial startups and novel products for farm and pharma.

YoFi Protein & Fibre full Prebiotic Chocolate

Yogurt, the Yo, is an excellent source of protein better than milk not only in quantity but also more importantly the quality. Since yogurt is made with live and active lacto-cultures, it is now a healthy lifestyle favourite. Quality! Because the microbial culturing of the milk proteins during fermentation in vogurt preparation makes these proteins easier to digest. Such proteins are also referred as "pre-digested." like honey is for the carbohydrates!!

Caseins, are the major group of milk proteins that coagulate in yogurt, having the most appropriate amino acid composition for growth and development of the young. Caseins are highly digestible in the intestine and this wonderful quality of these proteins in cattle milk makes it such an important human food. Coagulated casein in yogurt is rich source of amino acids and two important inorganic elements, calcium and phosphorus. Yo, the first value part of YoFi bar is yogurt contributing these nutritious and so easily digestible proteins.

Fibre, the Fi, is the second value part of YoFi bars. Nutritionists recommend 25 to 38 grams of fibre every day and obviously it is not possible to get it from one meal or one source. Best way is to supplement a portion of fibre from a dessert product like chocolate! Although not an energy source for humans, fibre is an important dietary aid that makes the gut healthy, metabolism strong and prevents many diseases or disorders like it can decrease cholesterol levels, help to reduce the risk of heart disease and even help control blood sugar levels.

YoFi gets this from Fenugreek (*Trigonella foenum-gracium*) or traditionally called "*Methi*" in India which is a leguminous herb possessing wonderful medicinal and spice value. Fenugreek seeds offer the richest source of both soluble and insoluble fibre. The whole seed powder has a bitter taste and odour due to certain constituents, present in its germ portion but not due to its polysaccharide. Purified fenugreek oligosaccharide gum used in this YoFi bar is a completely odourless and tasteless ingredient making the chocolate taste as it should!

Most desirably the fenugreek gum thickens the ingested food to form a gel in stomach trapping fat, sugars and starch hydrolysing 'amylase' enzyme to slow down sugar absorption.

Wow! YoFi bar has Yo (Yogurt) joining the Fi (Fiber) for the gut bringing a smiling life with guts!!

YoFi is wonder of deep scientific functional food research combining taste with nutrition having most digestive proteins with soluble fibre, a necessity of metabolism and healthy life. And that too is in a "GenY" taste format of a chocolate bar that has added value of the prebiotic potential too for making all probiotic supplements effective which we take for gut health by helpful microbes that sustain life!!

What next? YoFi is appearing in deep (Dark chocolate), light (Milk chocolate) and white (Milky bar) choices for adults, teens and children while seniors have all for them too with less sugar and fat. It is for everyone whether you like classic chocolates or you like mild or light.

SKiES Life Technologies Pvt. Ltd. Bringing nature to life

Research & Development: SKiES Lab, Biotech Park, Kursi Road, Lucknow 226021, UP, INDIA **Head Office:** SKiES, E-6, Office-1, 1st Floor, Bali Nagar, New Delhi 110015, INDIA

Biotech Park: +91 8765346971. Head Office: +91 11 25937717 info@skiesindia.com

www.skiesindia.com

YoFi CHOCOLATE BAR

FSSAI Registration

2nd July 2013

Suman Khanuja Innovation Enterprises Bringing nature to life

SKiES Entrepreneur Enabler (SEE 2013-14)

Suman Khanuja Innovation Enterprises (SKiES) is industrial biotech R&D-cum-product innovation enterprise working on improvising and developing technologies and products while also extending scientific and technical services including consultancy and IPR Management independently as well as through business alliances in the biotechnology sector covering areas of agribiotech, post-harvest technology, food biotech (health foods, dietary ingredients, nutritional supplements, functional foods, nutraceuticals), bioactives and molecules (pharmaceutical and medicinal active ingredients), aromas, veterinary health care products, biotech processes for manufacturing microbial/animal/plant products including natural and value added products from flora, fauna and agriculture produce.

Suman Khanuja Innovation Enterprises

 Research Centre:
 Biotech Park, Kursi Road, Lucknow 226021, UP, INDIA

 Production Centre:
 G 4 & 5, UPSIDC-1A, Agro Park II, Barabanki 225302, UP, INDIA

 Innovation Centre:
 E-6, Office-1, 1st Floor, Bali Nagar, New Delhi 110015, INDIA

Contact: Biotech Park: +91 8765346971,

info@skiesindia.com

Head Office: +91 11 25937717 www.skiesindia.com

SKiES Entrepreneur Enabler (SEE 2013-14)

As its Pioneering Human Resource (HR) Service Initiative

SKiES offers sector specific industrial and agro -biotech training modules

- > Speciality industrial (agriculture, food and health) biotech skill developer
- ➤ Bio-entrepreneurial opportunities enhancer
- > Self-employment biotech capabilities generator

The training modules offer intensive industrial skill development exposure in specialised areas of agribiotech, plant biotech, food biotech, medicinal and aromatic plants, natural products, functional foods, nutraceuticals, and bioactives for pharma and agro applications. The objective is to fill gap between formal science and engineering education and industrial needs in human resource as super-skilled manpower in biotech and life-technologies sector.

Beneficiary recepients who can avail this unique "hands-on-minds-in" skill creationexposure through SKiES can be students, industrial interns, researchers, industries, finishing schools, institutions and individuals with specific skill needs from these areas. The trainees can be from all streams of life sciences, biotechnology, agriculture, natural products chemistry and allied engineering and technology fields

For sponsors: The training modules will be available in *ready-to-go* as well as *custom-made* fashion to suit trainees' and sponsors' requirements.

The SKIES program offers module of two/three months each or six-twelve months packages depending on the skill need and levels. It will involve laboratory work, techniques and methods on analytical instrumentation, field/industry visits and short term projects along with industrial process optimization in lab and floor with direct "hands-on-minds-in" exposure. The fee structure for the "ready-to-go" modules is as follows

S.NO.	MODULES	TIME DURATION	FEE (INR)*
1	Module Level 1	Two months	12,000
2	Module Level 2	Three months	15,000
3	Package Level 1	Six months	24,000
4	Package Level 2	Twelve months	40,000

- * Service tax to be paid to the government will be additional as per actuals (Currently 12.36%)
- Level 1 is meant for a fresher taking technology entrepreneurial training for the first time while Level 2 is for those who have initial exposure and are ready to take up project mode training.
- Full package, however is recommended, if process-to-product exposure is desired with quality analytical skills backup
- > Travel involved for visit to outside industry and fields will have to be borne by candidates . (special support will be given to candidates showing outstanding performance.
- Special support in form of a stipend to reduce fee payable will be available to extra-meritorious candidates with outstanding performance during the training period in package formats.

Suman Khanuja Innovation Enterprises

Research Centre: Biotech Park, Kursi Road, Lucknow 226021, UP, INDIA
Production Centre: G 4 & 5, UPSIDC-1A, Agro Park II, Barabanki 225302, UP, INDIA
Innovation Centre: E-6, Office-1, 1st Floor, Bali Nagar, New Delhi 110015, INDIA

Contact: Biotech Park: +91 8765346971,

Head Office: +91 11 25937717

info@skiesindia.com www.skiesindia.com

Acknowledgement...

Team CIMAP (CSIR)

The green path to better health & life

Acknowledgement...

www.skiesindia.com

Best of Learning!

SUMAN KHANUJA INNOVATION ENTERPRISES

SKiES Life Technologies Pvt. Ltd.

Bringing nature to life

Suman P S Khanuja Founder, SKiES India Director & Mentor SKiES Life Technologies

> khanujazy@yahoo.com spskhanuja@gmail.com spskhanuja@skiesindia.com